skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dogga, Pradeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide-area scaling trends require new approaches to Internet Protocol (IP) lookup, enabled by modern networking chips such as Intel Tofino [35], AMD Pensando [2], and Nvidia BlueField [55], which provide substantial ternary content-addressable memory (TCAM) and static random-access memory (SRAM). However, designing and evaluating scalable algorithms for these chips is challenging due to hardware-level constraints. To address this, we introduce the CRAM (CAM+RAM) lens, a framework that combines a formal model for evaluating algorithms on modern network processors with a set of optimization idioms. We demonstrate the effectiveness of CRAM by designing and evaluating three new IP lookup schemes: RESAIL, BSIC, and MASHUP. RESAIL enables Tofino-2 to scale to 2.25 million IPv4 prefixes-- likely sufficient for the next decade--while a pure TCAM approach supports only 250k prefixes, just 27% of the current global IPv4 routing table. Similarly, BSIC scales to 390k IPv6 prefixes on Tofino-2, supporting 3.2 times as many prefixes as a pure TCAM implementation. In contrast, existing state-of-the-art algorithms, SAIL [83] for IPv4 and HI-BST [65] for IPv6, scale to considerably smaller sizes on Tofino-2. 
    more » « less
    Free, publicly-accessible full text available September 17, 2026
  2. Despite advances in debugging tools, systems debugging today remains largely manual. A developer typically follows an iterative and time-consuming process to move from a reported bug to a bug fix. This is because developers are still responsible for making sense of system-wide semantics, bridging together outputs and features from existing debugging tools, and extracting information from many diverse data sources (e.g., bug reports, source code, comments, documentation, and execution traces). We believe that the latest statistical natural language processing (NLP) techniques can help automatically analyze these data sources and significantly improve the systems debugging experience. We present early results to highlight the promise of NLP-powered debugging, and discuss systems and learning challenges that must be overcome to realize this vision. 
    more » « less